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The physical properties of a supersaturated binary solution such as its density p, shear viscosity 7, and
solute mass diffusivity D are dependent on the solute concentration c¢: p=p(c), n=7(c), and D =D (c).
The diffusion boundary layer equations related to crystal growth from solution are derived for the case
of natural convection with a solution density, a shear viscosity, and a solute diffusivity that are all depen-
dent on solute concentration. The solution of these equations has demonstrated the following. (a) At the
vicinity of the saturation concentration ¢, the solution shear viscosity n depends on p as
ns=n(ps) <p'’*(c,). This theoretically derived result has been verified in experiments with several aque-
ous solutions of inorganic and organic salts. (b) The maximum solute mass transfer towards the growing
crystal surface can be achieved for values of ¢ where the ratio of d In[D(c)/dc] to d In[n(c)/dc] is a

maximum.

PACS number(s): 61.30.—v, 64.60.Cn, 64.60.My, 47.15.Cb

I. INTRODUCTION

The problem of crystal growth from supersaturated
solutions is well known. In recent years there has been
considerable interest in crystal growth under microgravi-
ty conditions. However, there is no appropriate formal-
ism that accounts for both the hydrodynamic and the
thermodynamic aspects of the problem. The develop-
ment of such a formalism is of paramount importance in
understanding how the static and the dynamic charac-
teristics of a solution, such as its density, viscosity, and
diffusivity, are related to each other at concentrations at
saturation and above.

Current analytical approaches for the descriptions of
crystal growth from supersaturated solutions (see [1-3]
and references therein) neglect most of the significant
features of the solution’s metastable state. These include
the nontrivial dependence of the solution density p, the
shear 77 and the bulk § viscosities, and the solute mass
diffusivity D on the solute concentration c¢. The usual
practice [1-3] has been to assume that these physical
characteristics are constants that are independent of
solute concentration. However, recent studies [4~11] of
supersaturated aqueous solutions of inorganic and organ-
ic salts have demonstrated that the solution density p, the
shear viscosity 7, and the solute mass diffusivity D have a
nontrivial dependence on the solute concentration c:
p=plc), n=n(c), and D =D (c), which becomes more
significant with deeper penetration into the metastable re-
gion. For example, the diffusivity D (¢) declines to zero
at the spinodal line that separates metastable and unsta-
ble states. These facts have necessitated the development
of an appropriate formalism to describe crystal growth
from supersaturated solutions taking into account the
dependence of these physical properties of supersaturated
solutions on solute concentration.
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II. NATURAL CONVECTION EQUATIONS
AND SOLUTION METASTABILITY

Let us consider the situation where a supersaturated
solution is mixed as a result of natural convection, which
arises due to a depletion of solute concentration near the
growing crystal surface. This depletion results in a
change in solution density and leads to the appearance of
concentration flows. However, because the solution has a
finite viscosity and sticks to the crystal solid interface, an
unmixed boundary layer is formed. Within this layer, ad-
jacent to the growing crystal surface, the solution can be
assumed to be stationary and the solute mass transfer is
achieved only by means of ordinary diffusion. In this pa-
per we assume that the crystal surface and the solution
have the same temperature and thus there is no heat
transfer.

Natural convection arises only when there is a change
of solution density occurring in a gravitational field and
only in those cases where the density gradient formed is
perpendicular to a gravitational field or when the solution
density increases from the bottom upward. The magni-
tude and the distribution of hydrodynamic and
diffusional flows depend primarily on geometry and, in
particular, on the shape and orientation of the growing
crystal surface. Generally, on the basis of the Bjerkness
theorem [12], one may expect that natural convection
will occur in such a way that surfaces of equal solution
density are oriented perpendicular to surfaces of equal
pressure. In this paper we consider the simplest case
where the growing crystal surface is a smooth vertical
plate placed in a gravitational field. The case of horizon-
tal orientation of the growing surface is considerably
more complicated and will be studied later.

Solution metastability implies that its density, shear
and bulk viscosities, and solute mass diffusivity are func-
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tions of solute concentration. Due to the crystal growth
process the solute concentration is different far from the
growing surface than at the crystal-liquid interface. It is
usually assumed that an entire change of solute concen-
tration occurs within the diffusion boundary layer (DBL)
S4i- At the growing crystal surface the solute concentra-
tion ¢ must be greater than or equal to the saturation
concentration ¢, (¢ Z¢,) at the system temperature and
pressure. Outside the boundary layer the solute concen-
tration is a constant (¢ =c ), although it fluctuates in
time and space. Thus, within the boundary layer 84, for
the case when the solution density p(c), the shear 7(c)
and the bulk §(c¢) viscosities, and the solute diffusivity
D(c) are weak functions of the solute concentration ¢ one
can write the following Taylor expansions:

dplc)

ple)=plc )+ 3c

_ Ac[1+0(1)], )

©

n(c)=n(cw)+—a%ic—)

4

Ac[1+0(1)], (2)

c=c

D(c)=D(c, )+ L)

e Ac[1+0(1)], 3)

©

where Ac=c—c,. The weakness concept for any
infinitely times differentiable function f (c) assumes that

n—1
d 4" flc)

4 Jen—1 Ac <<n where n =2 .
4 c

C=C°(7

In spite of the possible types of dependence of the func-
tion f(c) on ¢, fulfillment of the weakness concept is al-
ways expected for the case of small supersaturations
[Ac|pax=lc;—c o .

Let us take x, =0 as the surface (010) of the growing
crystal plate, directing the x, axis into a solution and the
x, axis vertically upward. The lower ledge of the plate
corresponds to the value x;=0. As a supersaturated
solution flows parallel to the crystal plate, the thickness
of the boundary layer 844 increases with the distance x
from the lower ledge where flow meets the plate. There-
fore, the thickness 844 of the DBL can be considered as
an increasing function of x;: &4=064s(x;). Thus the
general Navier-Stokes equations describing the gravity-
induced two-dimensional steady laminar motion of
an incompressible supersaturated solution within
[x, =84ix{x,)] and beyond [x,>J4{x,)] the DBL ac-
quire the form

29I,
S - =8uglp(c)—plc.)10Bun(x ) =x,) ,  (4a)
i=1 %%
dv;  dv,
L+ 2=0 4b
ox, Ox, ’ “o)
where
I, = — by, +ple)wsn; +(c) | ork 42U j=1,2
A AU ARG AR R P

In the above expressions II;; is the density tensor of the

solution momentum flow, p is the solution pressure, v,
and v, are the solution velocity components, g is the
gravity acceleration, and 6(84q{x,)—x,) is the unit step
function (Heaviside function) equal to 1 for §4g{x;)=x,
and equal to O for §4¢(x ;) <x,. Equation (4a) assumes
that solution is isotropic, i.e., 17(¢) is the scalar quantity.
The continuity equation (4b) assumes that a supersaturat-
ed solution is an incompressible fluid. Utilizing the fact
that the DBL thickness 84{x) is very small compared
to the length L along a crystal plate, one can significantly
simplify Eq. (4a). Thus, in the particular case where
84i{x1)/L << 1, the equation describing solution motion
along the x, axis acquires the form

p(c)

v, +av1
ax,v1 ax2”2

t+glple)—plc)]0(84ia(x ) —x,) . (5)

This form implies the following assumptions imposed on
solution motion: (a) viscosity exerts a significant
influence only within a boundary layer, (b) flow velocity
must become zero at the solution-crystal interface, (c) the
solution retardation in a boundary layer is caused by
viscous forces alone, and (d) the pressure change in a
boundary layer is determined by its change outside and in
the natural convection case is negligible since solution
outside a boundary layer is almost stagnant. Substituting
into Eq. (5) expansions (1) and (2), which account for the
dependences of the solution density and the shear viscosi-
ty on solute concentration and keeping only the main
terms proportional to Ac and d(Ac)/dx, one can rewrite
Eq. (5) as

%,

x3

4

-]
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o 2 o
ax2
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where

_Mlcy)
plcy,) ’

_ 3ln[p(e)]

b dc

Voc

o
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_ 0ln[n(c)]
« dc

C=C o

Boundary conditions for Eq. (6) have the form
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=0, (7a)

Uy

Uy _ T, =0. (7b)

Condition (7a) reflects the fact that solution sticks to the
crystal solid interface, whereas condition (7b) describes
solution stagnancy at the infinite distance from the DBL
edge. Thus Egs. (4b) and (6), together with boundary
conditions (7a) and (7b) describe the hydrodynamic as-
pects of natural convection corrected by accounting for
solution metastability in the system supersaturated solu-
tion plus growing crystal surface.

ITI. SOLUTION OF THE DERIVED EQUATIONS
FOR THE CASE OF NATURAL CONVECTION
IN SUPERSATURATED SOLUTIONS

In order to simultaneously solve Egs. (4b) and (6) let us
introduce the stream function W(x,,z)=Cx}*f(z) and
z=C,x | *x, defined by the relations [12,13]

oV(x,,z) ,
“1=—5;:"“=@1@2xi/2f (2), (8)
__ SWxpz) 6 x4 ,
v, = ax, 2 * [3f(2)=f'(2)], (9)

where the dimension constants ¢; and @, and the func-
tion f(z) are the quantities to be defined later. The intro-
duction of the stream function W(x,,z) allows us to
rewrite Eq. (6) in the form

L@ P=3f(2)f"(2)=— w@ ") 1+ (K — @5 )OS g x 1) —x5)Ac ]
” JdAc 80 ) _
w@} (2)=~ +(@1@2)2Ac O(Sgiglx;)—x,) . (10)

The equation obtained above can be satisfied only when the solute concentration ¢ is understood as a function of the

variable z: ¢ =c(z). In addition, as described above, there exists the equality ¢ (z)=c
This means that along the DBL edge the variable z is constant: z=z

for the case when x, = §4;4({x ).
. Therefore, after accomplishing straightforward

but cumbersome calculations we come to the following important conclusions: (a) the DBL thickness 84;4{x ) is defined

by the relation

8d1ﬂ'(x1)_ le
é,

(11a)

and (b) in the vicinity of the DBL edge there exists the following expansion of A, =Ac(z):

Ac(z)=T (z—z,)0(z, —z)+0(z—2z,)?), T =

where 0(z

dc(z)
oz |z=z,’

« —2) is the Heaviside function [see definitions for expression (4a)].

(11b)

o

Substituting now expansion (11b) into

Eq. (6), we obtain the nonlinear differential equation for the function f(z),

%[f’(z)]z—%f(z>f"(z>=~vw @lf'”(z)[H-

P
Fv k=TI, f"(2)0(z,
¢,

Let us look for a solution of this equation in the form
[@2)=f,(2)0(z,—z)+ f (z)8(z—z ), (13)

where the functions f,(z) and f,(z) give solutions of Eq.
(12) within and beyond the DBL. Equations for the func-
tion f,(z) and f,(z) have the forms

L fo(2)P—2f,(2)f ()

e,
_—Vm_f,:;ll( M1+t (w0, —k )T o (z—2 )]

+ % o(2)— (14a)
VOOKOO @ eofw a

Z(z—2z,),

(@ @2)2

w Ko ) T olz—2z,)0(z,

_z)_

_Z)]

gw,I,

W(Z z )G(Zw—z). (12)
2

(@) P =31 (2)f ) (2)= (14b)

@2 s
TV fb (Z) .
1

Boundary conditions for these equations given in terms of
the functions f,,(z) and f,(z) can be derived from rela-
tions (7)—(9) in the form

fw(z)|z=0=fl:J(Z)|Z=0=0
fb(z)|z=oo=ft:(2)|2=°°

(15a)

(15b)
One of the possible solutions of Eq. (14a) subjected to

the boundary condition (15a), can be found as the series
expansion
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fu= Kol oZo —1
Yok, — )T 22 Sy
_ 3K 2w,
fs= 1+(k,—w0 )Tz, fas
_ 4, — 3w,
fe= 1+(ky, —0 )T oz, s>
_(n =1k, —(n —2)o,
L e P ST T
n—3
_ _(n—=2) ) —3 _
m2=3m!(n _m)![Sm(n m)—3n(n—1)]
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where n = 6. This solution can be considerably simplified
if one assumes that the solution constant z_ can be
defined as z_, =1/(I" _ k. ). Such an assumption leads to
the vanishing of all expansion coefficients f, (n =4) leav-
ing only one nonzero term in series (16) corresponding to
n=3,

_ gw,,
v C G2k, —w,)

fu2=1%f32, f3 (17a)
One of the possible solutions of Eq. (14b) subjected to
the boundary condition (15b) is

€, 1

fb(z)=—12vw—@-——; . (17b)
1

Both solutions f,,(z) and f,(z) obtained correspond to
connective flows within and beyond the DBL and should
coincide along this layer edge f,(z,)=f,(z,). This
condition provides a way to determine the constant €, in
the form
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1/4
gW

1
@ =
> Tk, l72v§°(mw—2xw)

(18)

It is noteworthy that further agreement (patching) of the
solutions f,(z) and f,(z) is impossible since their first
derivative and all consequent derivatives are not equal
along the DBL edge. Therefore, one may conclude that
the problem general solution f(z), given by relation (13),
has discontinuity points along the DBL edge. To explain
this conclusion let us find velocity components v, and v,
within and beyond the DBL. For this purpose results
(17a) and (17b) for the functions f,,(z) and f,(z) have to
be substituted into the corresponding expressions (8) and
(9) for the velocity components:

80
V= 2

x5, v,=0 (within),

2v (2, — @)
_ X1 _ 1
v =12v,— , v,=12v_— (beyond) .
x3 x
2 2

It follows from the expressions obtained for the velocity
components v; and v, that within the DBL the tangent
velocity component v, is infinitely times greater than its
normal component v,, whereas beyond the DBL these
components become of the same order. This corresponds
to the following well-understood phenomenon of the
DBL separation: (a) within the DBL the solution motion
occurs along the crystal surface without side deviations
and (b) along the DBL edge the tangent and normal ve-
locity components become of the same order and the
DBL separation takes place. Thus the DBL edge can be
identified with the discontinuity line in solution motion
[13,14].

IV. THE DBL THICKNESS AND RELATIONSHIP
BETWEEN SOLUTION SHEAR VISCOSITY
AND DENSITY AT SATURATION POINT

Substituting relation (8) into expression (11a) for the
DBL thickness 84;#(x ) we obtain the result

T2V2 (2K, — @ o )X 4 14

glo,

Su(x1)= (19)

In the expression above we have taken into account that

TABLE I. Dependence of solution density (g/cm®) on solute concentration (mass fraction). The sat-

uration point is taken at 25 °C and normal pressure.

Saturation point
at 25°C

Intersection point
between 7(c,, )

Aqueous @ of and normal pressure and Ngampte(C o )
solution Nsamplel € o0 ) a, a; (in mass fraction) (in mass fraction)
KCl 0.904 1.013 0.571 0.264 0.268

ADP 1.739 0.998 0.564 0.283 0.253

KDP 1.294 0.996 0.744 0.200 0.195

TGS 1.437 1.005 0.367 0.231 0.215
glycine 1.329 1.000 0.343 0.198 0.183
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the x, axis and the gravity acceleration g are oppositely
directed. Thus, by means of the result (19), we have de-
rived how the hydrodynamics of natural convection are
related to thermodynamic metastability of supersaturated
solutions. In expression (19) metastability effects are tak-
en into account through the dependence of the solution
density p(c, ) and the shear viscosity 7(c,, ) on the bulk
solute concentration ¢

An analysis of expression (19) obtained for the DBL
thickness 844(x,) allows the following conclusions.
First, we have obtained the well-known result that
8qi(x ) grows as (x, /|g|)'”* (see [12—14] and references
therein). Second, we have derived how the DBL thick-
ness d4{x,;) depends on the bulk solute concentration
¢, via such solution static and dynamic characteristics as
its density p(c,, ) and viscosity 71(c, ). This dependence
provides an opportunity to relate to each other the super-
saturated solution static and dynamic characteristics. In
particular, expression (19) allows a relationship between
the density p(c,) and the viscosity 77(c,) of supersaturated

c), c)(cP o
E'rl()nm()(c ) (a) .
b TGS v”/
F
i
T
3

16 [

1.5

saturation point /

(V/u

//./
_—
) s‘oluﬁe cqncentration N ci(in mass fractiqr{?J(
0.13 0.18 0.23 Caat 0.28
T ]
1.55 — MN(e), ’r]mpl e(c ) (cP) (b) GLYCINE

145 |
135 - o
®
125 |- saturation pomt/f
/ -

105 |-

095 [
L

0.85 ]
o 0.05 0.1 0.15 C 02
sat

solute concentratlon, ¢ (in mass fraction)

SV S ol

FIG. 1. Dependence of the bulk solution viscosity 7(c,, ) (cP)
on the bulk solute concentration ¢, (mass fraction) for the TGS
and glycine aqueous solutions. Solid lines correspond to experi-
mental data, whereas short-dashed lines correspond to interpo-
lation by means for the sample function Nsample( € o )

solutions. It is apparent that a boundary layer should
vanish at the saturation point since at this point solution
and the growing crystal surface are in thermodynamic
equilibrium. As it follows from the result (19) obtained
for 844{x,), such a situation is possible only when the fol-
lowing equality is satisfied:

=2k, = - (20)

w G w S

@l

An analysis of Eq. (20) gives that at saturation point the
solution density p(c,) and viscosity 7(c,) should be relat-
ed as

(e, )=Cp'?(c,) . (21)

This result has been experimentally verified with inor-
ganic and organic aqueous solutions such as NaCl, KCl,
urea, ADP (NH,H,PO,, KDP (KH,PO,, TGS
[(C;HsNO,);H,S80,], and glycine [4—11] taken at 25°C
and normal pressure. For all these solutions it was found
that the dependence of their bulk densities p(c,,)
on the bulk solute concentration c, was linear:
plc,)=ap+a,c, (Table I gives coefficients a, and a,
for different solutions). The error of such a linear inter-
polation of the experimental density data was always
within 0.01%. The experimentally obtained dependences
of the solution shear viscosity 7(c., ) on the bulk solute
concentration ¢, for the TGS and glycine aqueous solu-
tion are presented in Figs. 1(a) and 1(b) (the experimental
error of the viscosity measurements is within 15%). In
these figures the solid lines correspond to the viscosity ex-
perimental data versus solute concentration whereas
short-dashed lines represent the sample function
Nample € ) =Cp'"*(c ;). It follows from the straightfor-
ward comparison between the viscosity experimental data
line and the sample function line that their intersection
approximately corresponds (the error in correspondence
is within 15%) to the saturation concentration c, at the
given temperature and pressure for every tested solution
(see Table 1). Therefore, the analytically derived con-
clusion that at the vicinity of the saturation point there is
the specific relationship, given by expression (21), be-
tween the solution viscosity and the density is experimen-
tally confirmed with an accuracy of 85%.

V. SOLUTE FLOW TOWARDS
THE GROWING CRYSTAL SURFACE

To define a complete system of equations describing
isothermal solute diffusion in the natural convection case
one has to supplement the general Navier-Stokes and
continuity equations (4a) and (4b) by the corresponding
solute diffusion equation. For the particular case where a
supersaturated solution can be considered as an in-
compressible fluid and in the stationary limit, the two-
dimensional equation for the convective solute diffusion
acquires the form

acv+8cv= d
ax, ' ox, ? ox,

d

X2

dc
D(C)8x2

dc
Dle)as, ]+a

(22)
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It is assumed in this equation that for the saturated and
the supersaturated solutions the solute mass diffusivity
D (c) is dependent on the solute concentration c. The evi-
dent analytical form of this dependence is not established
yet. However, numerous experimental investigations
[4—-11] have demonstrated that D (c) is a nontrivial and
strong function of the solute concentration c¢. In order to
solve Eq. (22) within the DBL, it is assumed that there
exists an expansion (3) for the diffusivity D (c). The fol-
lowing utilization of the fact that the DBL thickness
S4a({x,) is very small compared to the characteristic
length L of a crystal plate allows one to considerably sim-
plify Eq. (22):

dc dc
dx vt ox, vz
_ 3% dc 2
————D(Cw) '5;‘%—'{" © k'a 9(8diﬁ-(x1)~x2) ’
(23)
where
_ 9In[D(c)]
Vo= 3 =
C c=c

It is noteworthy that y , <O since in the supersaturated
region the solute mass diffusivity D(c,, ) is a decreasing
function of the solute concentration c: the diffusivity
D(c, ) declines to zero when ¢, is approaching spinodal
concentration at the given temperature and pressure.

To solve Eq. (23) let us introduce the new couple
(x1,z) of independent variables, replacing (x;,x,) by
(x 1,2 ):

8 _ 8z 3 _d
dx, Ox; 4x, 9z  3x,

The following replacement of the velocity components v,
and v, by their expressions given by relations (8) and (9)
allows one to rewrite Eq. (23) in terms of the new couple
of independent variables:

vy ¢ 3f(2) dc
f(Z)ax, 4x, 0z
2

% | oz, —z)

8z

, (24)

where the function f(z) within and beyond the DBL is
given by relations (17a) and (17b), respectively. Taking
into account the conclusion, obtained in the analysis of
Eq. (10), that within the DBL the solute concentration ¢
is a function of the only variable z, ¢ =c(z), provides the
following simplification of Eq. (24):

3% 2
Q‘f“yw 0(zw—z)

dc

az

3 ac__ﬁ
4f(2) z @1D(C°°)

(25)

In terms of the variable z, boundary conditions for this
equation can be reduced to the form

dc

C(Z)IZ=O=C(O), 52— ,

=Bolc(0)—¢], (26)
=0
where ¢(0) is the solute concentration on the growing
crystal surface (z =0). It is natural to assume that in the
crystal growing regime there exists the following double
inequality: ¢, <c(0)=<c,. The constant B,=p(c(0))=0
is the c(0)-dependent coefficient that characterizes the
rate of solute exchange between the crystal surface and
the solution. The second boundary condition (26) de-
scribes such a situation where the solute mass flow to-
wards a crystal surface is positive if ¢ (0) = c,.

The solution of Eq. (25) subjected to boundary condi-
tions (26) is straightforward:

c(z)=c,(2)0(z, —2z)+c,(2)0(z—z ) . 27)

In this expression c,,(z) and c,(z) are the solutions for the
solute concentration profiles within and beyond the DBL,
respectively,

cw(z)zc(0)+y—1—ln 1+y 2.B.[c(0)—c,]

2]

z/z 4
X f dx e!9/4)8cx
0

cb(z)=cw ’

where Sc=v_,/D(c,) is the Schmidt number. The
analysis of the solution ¢ (z) for z=0 and z, provides a
possibility to determine the coefficient 3, as the following
monotonically decreasing (without local extremum) func-
tion of ¢ (0):

¥ le o —€(0)]
e

c(0)—c,

1
szco
Substituting this expression for the coefficient 5, back

into relation (27) for the solute concentration c,(z) we
obtain

_ -1
Bo= L lfoldx e (974)5ex* . (28)

le, —c(0)]

cw(z)=c(0)+-y1—ln 1+(e"" —1)

]

/
fz zwdx e(9/4)5cx“
0

X i )
f dx e(9/4)5ex
0

(29)

Differentiating this expression with respect to z and hav-
ing in mind the relationship (11b), one can derive the fol-
lowing condition imposed on the problem charcteristics:

)_
F(l)y=1—¢"= @71 (30)
where
Fl-2 |= Ve e—(9/4)Scf2/z°°dx o (9/418ex*
Zg Ko 0

It is noteworthy that F(z/z ) <O since y ,, <0 in the su-
persaturated region. Utilization of condition (30) allows
one to rewrite the result (29) for the solute concentration
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¢, (z) profile as the following function of the variable z:

F 2
1 Zw
cw(z)—c(0)+7:ln 1+—-1—_77—(—17 (31a)

Taking into account that z=z_x,/844x,), one can
represent expression (31a) for ¢, (z) in terms of the initial
coordinate variables x; and x,,

F|—22
() =c(0)+ L in |14 L Oanx1) | (31b)
c,(z)=c . n T=F )

In the crystal growth problem it is essential to know
the solute diffusional flux j;s(x,,x,) directed towards
the growing crystal surface. This flux is defined as

dc,,(z)
ax,

dc,(z)
9z

Jair(z)=D(c,) @y 'x1*D(c,)

Let us find separately the flux j;s(z) on the DBL edge
[x,=84agl{x,) or z=z_,] and on the crystal surface
(x,=0o0rz=0):

Jair(x1,84ig{%1))=D(c )T, ,

D(c(0)) e—(9/4)Sc
D(c,) 1—F(1)’

(32a)

Jair(x1,0)=Jjaig(x 1,84i8(x 1)) (32b)

where D(c(0)) is the solute mass diffusivity on crystal
surface and @, is given by expression (18). Having in
mind that within the DBL the solute diffusivity D (c) is a
weak function of the solute concentration ¢ [an assump-
tion already used in expansion (3)], one may represent
D(c(0)) in the form:

1_7_“’

D(c(0))=D(c,)

o0

Therefore, the ratio  A(Y ,,Kk4,S8¢)=j4a(x1,0)/
Jaig[ X 1,84i{x )], which characterizes the efficiency of the
solute mass transfer towards the growing crystal surface,
is given by the expression

( 1 +e)e —(9/4)Sc
14 ee —(9/4)s¢ ld (9/4)Sce* ’
€e fo Ee

(33)
where €=|y .| /k.. The analysis of this expression gives
that the ratio A(e,Sc) is the monotonic function of the
both variables € and Sc. However, A(€,Sc) is the increas-
ing function of the variable € (0 <€ =< « ), whereas it is
the decreasing function of the variable Sc (0<Sc =< « ).
For the given Schmidt number Sc the ratio A(€,Sc) ac-
quires a minimum value when €=0 and a maximum
when €= o0:

A'(Yw’Kwysc)=K(€,SC)=

min[ A(x,S¢)|g,—const ] = A(0,Sc) =e ~O/4Se (34a)
max[A(x,S¢)|se=const ]
—1
=x(oo,sc)=[foldge—“’/‘“scé“ . (34b)

Therefore, the most favorable regime for the solute mass
transfer corresponds to such solute concentration regions
where the ratio of d In[D(c)]/dc to dIn[n(c)]/dc ac-
quires a maximum value. Expression (34b) for the ratio
A(0,Sc) can be considerably simplified if one makes use
of the Watson lemma [15] in the calculation of the in-
tegral involved. It is straightforward to demonstrate that
in the limiting case where Sc>> ¢ there exists an approxi-
mation
Ve ommseet 1 (osasc
f o dée ~3sc® .

Substitution of this result back into relation (34b) pro-
vides the following simple expression for the ratio
A ,Sc):

Al 00,Sc)=9 Sce ~(9/4)8¢ | (35)

where Sc>>$.

It is the usual situation when the solute mass diffusivity
D (c) is a stronger function of the solute concentration ¢
than the solution shear viscosity 7(c). Therefore, the
case of €=0 corresponds to a complete disregard of the ¢
dependence in diffusivity as well as in viscosity. On the
contrary, the case of €é= « describes such concentration
regions where any change of solute concentration leads to
the much faster changing of the c-dependent diffusivity
than of the c-dependent viscosity. It is noteworthy that
accounting for the c¢ dependence of the solute mass
diffusivity D(c) and the solution shear viscosity 7(c)
leads to an increase of the ratio A(e€,Sc) estimations
A(0,Sc) < A ,Sc).

VI. CONCLUSIONS

It follows from the analysis presented above that (a) in
the vicinity of the saturation concentration ¢ there exists
the relationship between the solution shear viscosity and
density, n(p,)<p'’*(c,); (b) the most favorable regimes
for the solute mass transfer towards the growing crystal
surface can be achieved when € >>1; and (c) the estima-
tions of solute mass flow towards the growing crystal sur-
face performed within the approaches disregarding the ¢
dependence of D (c) and 7(c¢) lead to its underestimation.

It is well known that under microgravity conditions
one may expect a significant improvement in crystal
growth since the DBL thickness increases with the de-
crease of the gravity acceleration constant g [see expres-
sion (19)]. However, as it follows from expression (19), it
is not necessarily the case. For example, at low supersa-
turations the ratio (2«x,/w.,—1)/g can still be small
even at microgravity conditions. This prevents the for-
mation of the appropriate boundary layer needed for im-
provement of the crystal growth process. Thus, to
achieve such an improvement of crystal growth one has
to obtain supersaturations so that 2« /o >>1.
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